4xEL 84 PP mit Atmega48 30W 2021

- GK 7 db F gang: 10Hz 1,4 db 75k Hz 2,8 db / 25 W
- 10 Hz 0,4 db 82kHz 2,8 db / 20 W
- Ohne GK 15 Hz 0,8db 67 kHz 3db / 25 W
- Passender Nt. T2761
- Leiterplatte 156 x 188 mm Fr4 2 DK
- Polypropylen Koppel Kondensatoren
- Auto Bias mit dem Atmega48
- Raa 4k M102a Aü

Die EL 84 ist eine alte Bekannte Röhre an der man nicht vorbei kommt!

Zeitgemäß bieten sich heute Microcontroler für mancherlei Arbeiten An! Dieser hier ist für den Auto Bias Zuständig. Dadurch entfällt die Manuelle Bias Einstellung. Die EL84 ist eine Sehr robuste Röhren und mit dem Auto Bias zusammen sind sie nahe zu Unzerstörbar. Soll Heißen wenn hier eine Röhre Versagt, dann aus Alters grund.

Die EL 84 ist ein echtes Wunderwerk, einer der Best Entwickelte Audio Röhre Überhaupt! Trotz der Kleinen Abmessung im Noval Design mit 22mm d und 72 mm hoch. 12 Watt Anodenverlustleistung und das Sehr Zuverlässig. Sie ist dafür bekannt, dass sie Robust und Sehr Zuverlässig ist. Die EL 84 Klingt dank ihrer Feinen Charakteristik Sehr Präzise und Punkt genau. Sie besticht mit ihrer Auflösung und Sucht nach Sehr Hochwertigen Schallwandler die sie ihr Können beweisen kann. Sie Zählt zu den Top Röhrenverstärkern!

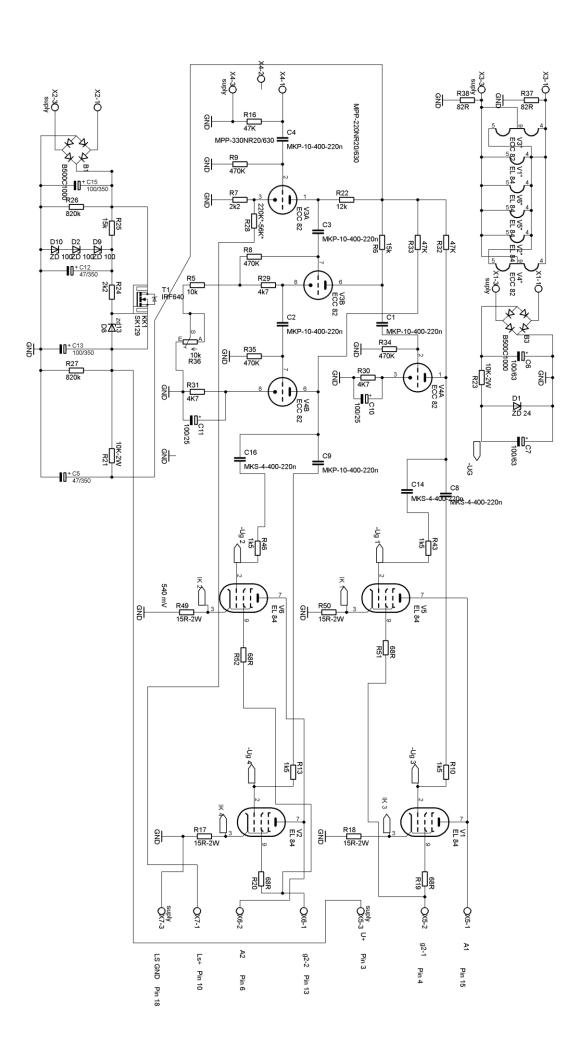
Mit einem Quartett bietet sie in PP Betrieb 30 Watt an die es echt in sich haben.

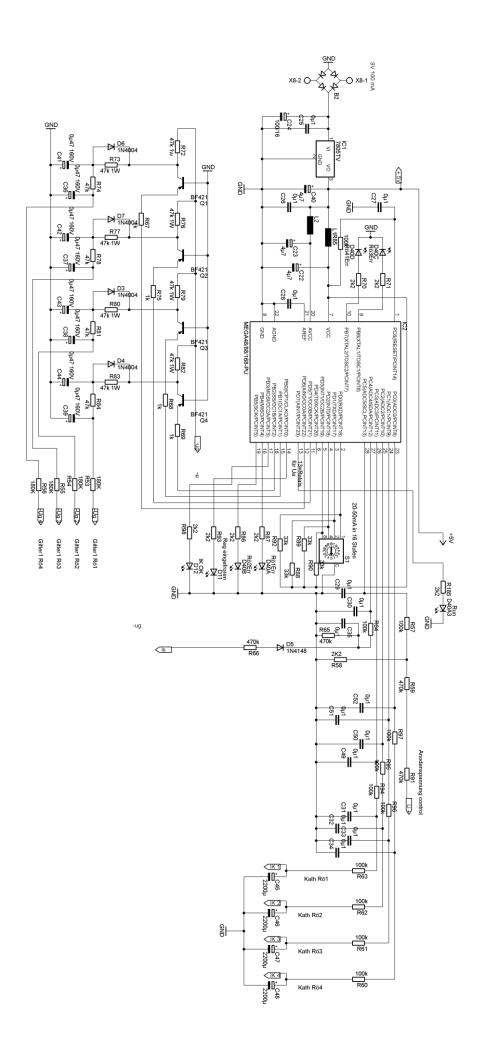
Ausgestattet mit einem EL34-KT88 4K M102a Übertrager. Somit bekommt die EL84 die Möglichkeit auch in den Tiefsten Frequenzen ihr Können zu zeigen! Weniger Kuppferwiderstand und eine Tiefere Untere Grenzfrequenz. Machen diesen Amp. zum High end.

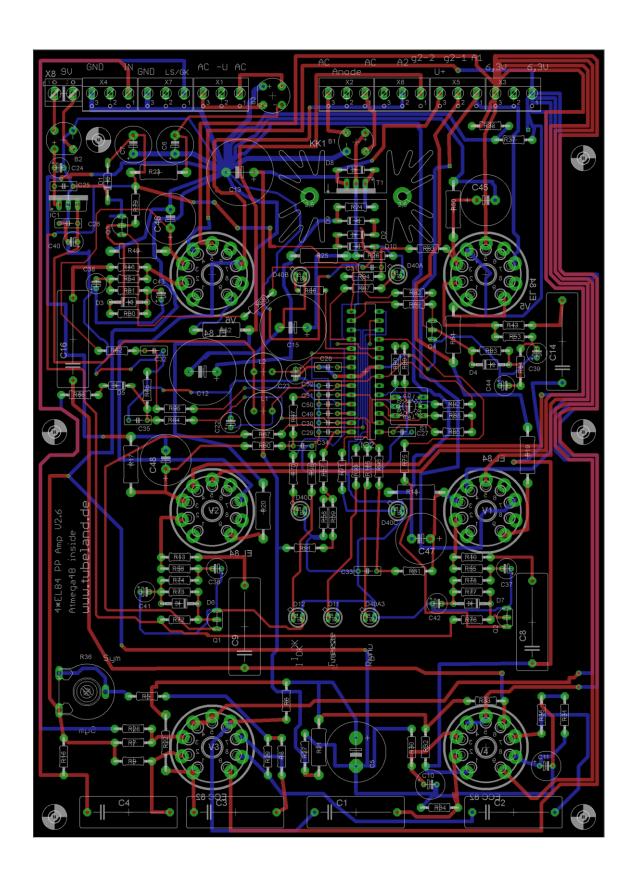
Die Eingangsempfindlichkeit wurde auf 775 mV RMS eingestellt. Wenn sie den Amp. Empfindlicher machen wollen, so können sie R22 Von 12K auf 100K erhöhen oder dazwischen. Das Gleiche Können sie mit R32 Auch machen Von 18K auf 47K. So könnte auch ein Handy zur Vollaussteuerung ausreichen, oder wenn sie mehr Gegenkoppeln möchten.

Der Symmetrische Abgleich erfolgt über R36.

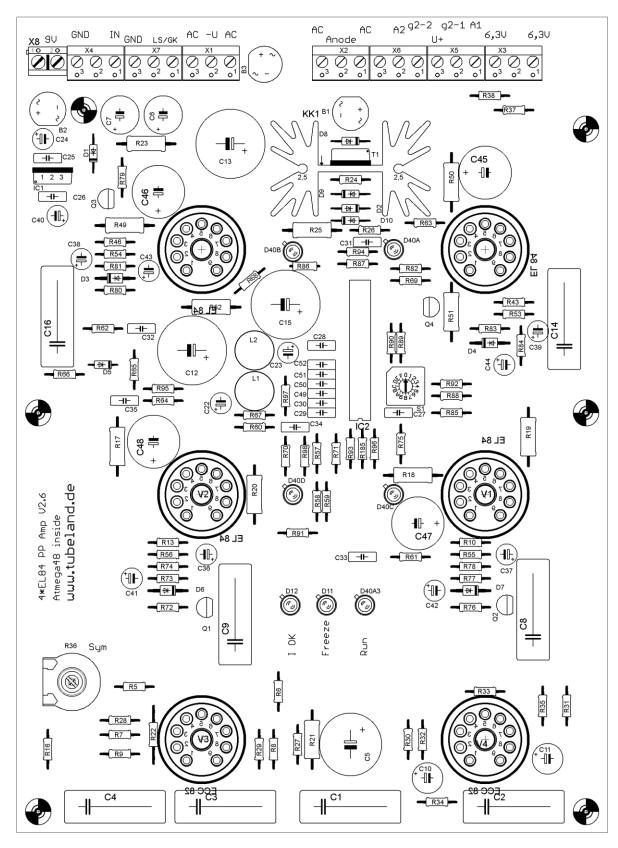
Die Bias Einstellung übernimmt der Atmega48 S1 (Hex Schalter auf Stufe 7 einstellen) das ist alles. In der Nachfolgender Tabelle Sehen sie die Einstellmöglichkeiten in Falle wenn sie Abweichend den Ruhestrom einstellen möchten.


Damit der Regler 100% Funktionieren kann, ist es Absolut erforgerlich das die Ausgänge auch mit der Leiterplatte Verbunden werden. Ansonzten kann der Controler den Wert nicht einfrieren.


Wenn sie nicht gegenkoppeln wollen entfällt R28


S	RK in Ohm	IK= A	RK in Ohm	IK= A	RK in Ohm	IK= A	RK in Ohm	IK= A
0	1	0,293	1,2	0,244	15	0,0196	1,8	0,163
1	1	0,328	1,2	0,273	15	0,0219	1,8	0,182
2	1	0,362	1,2	0,302	15	0,0242	1,8	0,201
3	1	0,397	1,2	0,331	15	0,0265	1,8	0,220
4	1	0,431	1,2	0,359	15	0,0288	1,8	0,240
5	1	0,466	1,2	0,388	15	0,0311	1,8	0,259
6	1	0,500	1,2	0,417	15	0,0334	1,8	0,278
7	1	0,535	1,2	0,446	<mark>15</mark>	0,0357	1,8	0,297
8	1	0,569	1,2	0,475	15	0,0380	1,8	0,316
9	1	0,604	1,2	0,503	15	0,0403	1,8	0,336
Α	1	0,638	1,2	0,532	15	0,0426	1,8	0,355
В	1	0,673	1,2	0,561	15	0,0449	1,8	0,374
С	1	0,707	1,2	0,590	15	0,0472	1,8	0,393
D	1	0,742	1,2	0,618	15	0,0495	1,8	0,412
Ε	1	0,776	1,2	0,647	15	0,0518	1,8	0,431
F	1	0,811	1,2	0,676	15	0,0541	1,8	0,451

Die Anodenspannung ist komplett Stabilisiert. Um die Verluste möglichst klein zu halten, wurde die Vorspannung nur So hoch wie nötig gewählt. Das Macht sich bemerkbar, da nur wenig Leistung in Wärme umgesetzt wird.


Für T1 reicht ein Sk104 38mm Kühlkörper Völlig aus! Dieser wird gerade mal Hand warm! Zwar war ein Größerer Kühler vorgesehen für den Fall der Fälle das ein Netz Trafo mit höherer Anodenspannung bereitgestellt wird. Allerdings macht es keinen Sinn unnötig Leistung zu Verbraten und um den dann gerecht zu werden auch noch Größere und Teurere Kühler zu verbauen!

Das Abgleichen des Ruhestroms ist einfach und unkompliziert. Da die Röhre eher Stabile läuft ist der Aufwand gegen über eine KT88 geringer.

Der Tubeland Übertrager Wird wie im Schaltbild mit den Klemmen Verbunden.

A1 auf Pin 15 / G2-1 auf Pin 4 / U+ auf Pin 3

G2-2 auf Pin 13 / A2 auf Pin 6 / LS+ auf Pin 10 / LS GND auf Pin 18

Menge	Wert	Device	Bauteile
4	68R	2W Metall	R19, R20, R51, R52
2	82R	1/4 W Metall	R37, R38
4	15R-2W	2W Metall	R17, R18, R49, R50
4	1k	1/4 W Metall	R67, R68, R69, R75
4	1k5	1/4 W Metall	R10, R13, R43, R46
10	2k2	1/4 W Metall	R7, R24, R58, R70, R71, R86, R87, R93, R98, R185
3	4K7	1/4 W Metall	R29, ,R30, R31
2	10K-2W	2W Metall	R21, R23
5	10k	1/4 W Metall	R5, R88, R89, R90, R92
1	12k	1/4 W Metall	R22
1	15k	2W Metall	R25
1	15k	1/4 W Metall	R6
7	47k	1/4 W Metall	R16, R32, R33, R74, R78, R81, R84
8	47k 1W	1W Metall	R72, R73, R76, R77, R79, R80, R82, R83
11	100k	1/4 W Metall	R57, R60, R61, R62, R63, R64, R85, R94, R95, R96, R97
4	180K	1/4 W Metall	R53, R54, R55, R56
1	220K*-56K*	1/4 W Metall	R28
8	470k	1/4 W Metall	R8, R9, R34, R35, R59, R65, R66, R91
2	820k	1/4 W Metall	R26, R27
15	0μ1	C-EU050- 025X075	C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C49, C50, C51, C52
8	MPP- 220NR20/630	C-EU225- 087X268	C1, C2, C3, C4, C8, C9, C14, C16
8	0μ47 160V	CPOL-EUE2.5-6	C36, C37, C38, C39, C41, C42, C43, C44
3	4μ7	CPOL-EUE2.5-6	C22, C23, C40
2	47/350	E7,5-18	C5 , C12
1	100/16	CPOL-EUE2.5-6	C24
2	100/25	CPOL-EUE3.5-8	C10, C11
2	100/63	CPOL-EUE5-10.5	C6, C7
2	100/350	E7,5-18	C13, C15
4	2200μ	CPOL-EUE5-13	C45, C46, C47, C48
4	1N4004	1N4004	D3, D4, D6, D7
1	1N4148	1N4148DO35-7	D5
1	7805TV	7805TV	IC1
3	B500C1000	RB1A	B1, B2, B3
4	BF421	BF421	Q1, Q2, Q3, Q4

1	IRF640	IRF640	T1
1	MEGA48/88/168- PU	MEGA48/88/168- PU	IC2
1	zd13	ZPD	D8
1	ZD 24	ZPD	D1
3	ZD 100	ZPD	D2, D9, D10
1	IK OK	blau	D12
1	Rö1Err	rot	D40A
1	Rö2Err	rot	D40B
1	Rö3Err	rot	D40C
1	Rö41Err	rot	D40D
1	Reg eingefroren	SFH482	D11
1	Run	SFH482	D40A3
2		BS11	L1, L2
1	KDR16	P103	S1
1	10k	TRIM_EU-LI15	R36
1	SK104	SK104	KK1
8	suply	W237-103	X1, X2, X3, X4, X5, X6, X7, x8
2	ECC 82	ECC82-P	V3, V4
4	EL 84	EL84-P	V1, V2, V5, V6
6	Novalfassung		
1	28 DIP Fassung		
1	Leiterplatte	156x188 mm	

